Scalable Inference of Ordinary Differential Equation Models of Biochemical Processes
نویسندگان
چکیده
Ordinary differential equation models have become a standard tool for the mechanistic description of biochemical processes. If parameters are inferred from experimental data, such mechanistic models can provide accurate predictions about the behavior of latent variables or the process under new experimental conditions. Complementarily, inference of model structure can be used to identify the most plausible model structure from a set of candidates, and thus gain novel biological insight. Several toolboxes can infer model parameters and structure for smallto medium-scale mechanistic models out of the box. However, models for highly multiplexed datasets can require hundreds to thousands of state variables and parameters. For the analysis of such large-scale models, most algorithms require intractably high computation times. This chapter provides an overview of state-of-the-art methods for parameter and model inference, with an emphasis on scalability.
منابع مشابه
Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks
Mechanistic mathematical modeling of biochemical reaction networks using ordinary differential equation (ODE) models has improved our understanding of small- and medium-scale biological processes. While the same should in principle hold for large- and genome-scale processes, the computational methods for the analysis of ODE models which describe hundreds or thousands of biochemical species and ...
متن کاملNumerical solution and simulation of random differential equations with Wiener and compound Poisson Processes
Ordinary differential equations(ODEs) with stochastic processes in their vector field, have lots of applications in science and engineering. The main purpose of this article is to investigate the numerical methods for ODEs with Wiener and Compound Poisson processes in more than one dimension. Ordinary differential equations with Ito diffusion which is a solution of an Ito stochastic differentia...
متن کاملA scalable moment-closure approximation for large-scale biochemical reaction networks
Motivation Stochastic molecular processes are a leading cause of cell-to-cell variability. Their dynamics are often described by continuous-time discrete-state Markov chains and simulated using stochastic simulation algorithms. As these stochastic simulations are computationally demanding, ordinary differential equation models for the dynamics of the statistical moments have been developed. The...
متن کاملComparison between linear and nonlinear models for surge motion of TLP
Tension-Leg Platform (TLP) is a vertically moored floating structure. The platform is permanently mooredby tendons. Surge equation of motion of TLP is highly nonlinear because of large displacement and it should be solved with perturbation parameter in time domain. This paper compare the dynamic motion responses of a TLP in regular sea waves obtained by applying three method in time domain usin...
متن کاملParameter Estimation Using Divide-and-Conquer Methods for Differential Equation Models
In systems biology, a key topic is the elucidation of the dynamic behavior of biological processes that are made up of complex biochemical networks. Statistical modeling is an important to capture the dynamics of biochemical networks such as metabolic networks, signal transduction pathways, and gene regulatory networks. These biochemical models have a set of parameters that represent the physic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017